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synopsis 

An empirical model is proposed for viscosity of elastomers containing one or more 
fillers and/or one or more plasticizers. Only one coefficient for each filler and plasti- 
cizer is required, and the coefficients themselves are viewed as basic filler and plasticizer 
characteristics. The model has found wide applicability to many elastomer systems. 

INTRODUCTION 

Most commercial elastomer formulations contain various amounts and 
types of fillers and/or plasticizers, all of which exert major effects on the 
viscosity of the system. A means of predicting the viscosity of a proposed 
formulation is obviously highly desirable since viscosity control is crucial 
to  processing operations. To date, considerable work ha3 been done on the 
viscosity of elastomer-filler systems, considerably less on elastomer-plasti- 
cizer systems, and virtually none on the complete elastomer-filler-plasticizer 
systems. The purpose of this work was the development of a viscosity 
model for the elastomer-filler-plasticizer system which could be used for 
prediction. 

Any discussion of viscosity of filled elastomer systems must begin with 
the Einstein equation': 

7 = ~ o ( 1  + 2 . 5 ~ )  (1) 

where 9 and q0 are the viscosities of the filled and unfilled medium, re- 
spectively, and c is the volume fraction of filler. This equation applies to  
non-Newtonian liquids containing suspended, noninteracting, spherical par- 
ticles. To account for larger particle concentrations and thus significant 
interactions among particles, eq. (1)  wm modified by Vand12 Sirnhal3'and 
Guth, Simha, and Gold4 by including higher powers of c in the Einstein 
equation. 

7 = vo(1 + 2 . 5 ~  + 14.1~'). ( 2 )  

While these expressions appear adequate for low concentrations of glass 
beads and large-particle thermal blacks, they are very much inadequate 
for fine-particle fillers and high concentrations of even coarse fillers. 
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The latter is as follows: 
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One reason for their inadequacy is that filler particles dispersed in 
elastomers are generally surrounded by an adsorbed layer of insoluble 
elastomer, which effectively increases the volume fraction of dispersed 
particles. Brennan, Jermyn, and Boonstra5 attempted to deal with this 
problem by adding the so-called bound-rubber contribution to the filler 
volume fraction in the Guth equation. This improved it but still left 
major deficiencies. 

More recently, Pliskin and Tokita6 actually estimated the thickness of 
the adsorbed elastomer layer and calculated a more precise effective volume 
fraction of filler, c,. They then derived the following equation: 

d r l o  = (1 - Ce)--N (3) 
where N is a measure of the degree of orientation of the system which is 
dependent, among other things, upon shear rate. This equation provided 
a very good fit for several carbon black-elastomer systems. 

In  contrast to filled elastomer systems, viscosity of plasticized elastomers 
has received very little theoretical treatment in the literature. The work 
of Kraus and Gruver' is an exception. They proposed the following equa- 
tion : 

rl (c)  4(1)c,3.4 (4) 
where c, is the volume fraction of polymer, ~ ( c )  is the viscosity of the mix- 
ture, and ~ ( 1 )  is the viscosity of the elastomer. In the non-Newtonian 
region, they added a term for shear rate dependence. 

The viscosity models discussed thus far have been, for the most part, 
mechanistic in nature. That is, they were based, at least partially, upon 
an understanding of the physical realities of the systems involved. Such 
models are indispensible for ultimate understanding, but are often too cum- 
bersome for use as predictive tools, even when they are accurate. In  this 
work, an empirical approach was employed to find a model which ade- 
quately described the viscosity of elastomers containing both filler(s) 
and plasticizer(s). 

DEVELOPMENT OF EMPIRICAL MODEL 

A model relating filler and plasticizer concentrations to viscosity is not 
The simple two variable quadratic polynominal 

4 = bo i- b 9  f bzP i- b d 2  f bzzP2 f b1zPF (5) 

where 7 is the Mooney viscosity, ML, or MS,; F is the filler level; P is the 
plasticizer level; and bo, brr, and b, are fitted coefficients is almost always 
adequate. The major problem with this model is the interaction term 
bl2PF. The presence of this term means that the filler behavior is char- 
acterized only in the presence of the specific plasticizer used in the evalua- 
tion, and the results cannot be applied when another plasticizer is used. 
The same argument applies to the plasticizer behavior in the presence of 

hard to find. 
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the filler employed. Even if the interaction term could be omitted, we 
would still require two coefficients each to  characterize the filler behavior 
and the plasticizer behavior. 

What we would ideally like to  have is a simple linear equation of the fol- 
lowing form: 

f(7) = bo + biP + brF. (6) 

In this case, the plasticizer and filler behavior are each characterized by 
only one coefficient, and furthermore, filler and pigment act independently. 
To find such a function, the family of transformations proposed by Box and 
Cox* are employed as follows: 

= I n 7  X = O  

where q is the Rilooney viscosity, f(7) is a transformed version of 7, and X 
is a variable parameter. 

In practice, several values of X are chosen, usually in the interval +2. 
For each A, a regression analysis is run for both the linear model, eq. (6), 
and the quadratic model, eq. (5), on the transformed dependent variable 
f(7). From the resultant regression statistics for the fitted equations, 
the mean squares due to both linear and quadratic effects are calculated 
as discussed by Draper and Smith.9 These will be denoted by M S ,  and 
MS,, respectively. Since we desire a linear model, we want to find a X 
value for which the quantity 

F‘ = MS,/MS,  (8) 

is minimized. 
resulting in the smallest F’. 
alent to the simple power transformation as follows: 

We therefore construct a plot of F’ versus X and select X 
The transformation family of eq. (7) is equiv- 

dd = (dA. (9) 

The only difference is that eq. (7) is continuous at  X = 0, whereas eq. (9) 
is not. It is therefore clear that X = -1 is equivalent to  l /q ,  X = 0.5 is 
equivalent to &, x = 1 is equivalent to 7, etc. 

Example 

To illustrate the procedure, three fillers and one type of oil were studied 
in SBR-1500 in a 6 X 4 factorial design as shown in Table I. Mooney 
viscosity was measured at  100°C after 4 min with the small rotor. For 
each filler, regression analyses were run at  several values of X, and an F’ 
value was calculated for each A. A plot was then constructured of F‘ 
versus A, as shown in Figure 1. Clearly, for all three fillers the model be- 
came considerably more linear as X was decreased from its initial value of 
1.0. For Silica A, F’ reached a minimum between X = 0 and X = -1. 
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TABLE I 
Mooney Viscosity MSI a t  100°C &s Function of Filler and Oil Levels in SBR-1500e 

Naphthenic Filler, phr 
Oil,d 

20 

30 

0 12 24 36 48 60 

26 
26 
25 
18 
17 
18 
12 
13 
13 
- 
- 
11 

28 
38 
30 
19 
26 
21 
14 
20 
15 
12 
15 
14 

30 
50 
35 
20 
37 
24 
14 
27 
17 
12 
22 
15 

32 
76 
40 
21 
53 
28 
16 
37 
20 
13 
27 
17 

34 
108 
50 
24 
83 
33 
17 
57 
24 
14 
41 
18 

37 
157 
60 
24 

124 
41 
17 
87 
29 
14 
63 
25 

~~ ~ ~ 

a N990, Cabot Corporation. Silica A, Hi-Sil 233, PPG Industries. c Silica B, 
SBR 1500, Phillips Hi-Sil EP, PPG Industries. 

Petroleum Co. 
Circolite Process Oil, Sun Oil Co. 

6 

x 
Fig. 1. Fractional contribution of quadratic terms as a function of A. 
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For Silica B, the minimum was in the vicinity of -0.6; and for N990, the 
minimum was somewhere at  X < -1.0. Even bhough the three pigments 
showed different optimal A, the F values a t  X = 0 appeared to be a good 
compromise, as they were all near their respective minimum values. Since 
X = 0 corresponds to  the logrithmic transformation, these results indicate 
that the following equation should provide a good approximation to vis- 
cosity behavior as a function of pigment and plasticizer levels: 

In 9 = bo + blF + bzP (10) 
where bo, bl, and bz are parameters fitted via regression analysis; F is filler 
(pigment) level in phr; P is plasticizer level in phr; and 9 is Mooney vis- 
cosity (MS, or ML,). 

To simplify the equation, we note that when F = P = 0, bo becomes the 
log of the viscosity of the unfilled elastomer, which we will denote In v0. 
For simplicity, let US also set bl = y; and since b, will always be negative, 
we set b2 = -+, resulting in 

In 9 = In rl0 + y F  - +P. (11) 

Other equivalent forms of this equation are 

In(:) = T F  - +P 

and 

(13) 
9 

90 
- = exp ( y F  - +P) =exp ( y F )  exp (-+P). 

The regression analysis results for the fitting of the Table I data to eq. 
(11) are given in Table 11. The ranges for the parameters y and + in- 
dicate 95% confidence intervals. The regression F ratio and standard 
error both reflect the adequacy of fit of the equation. Since the viscosity 
was fitted in logarithmic units, the following approximation holds: 

Since the standard error is an interval in logarithmic units, it then is an 
approximation to  the fractional error in Mooney units. Thus, the errors 
for the three equations range from approximately 5.1% to  7.2%. The 

TABLE I1 
Regression Results for Data of Table I Fitted to Eq. (11) 

Regression Standard 
In 90 7. 4% F ratio error 

N990 3.218 0.006 + 0.001 0.031 =k 0.003 297 6 . 8  X 
Silica A 3.2122 0.031 f 0.001 0.032 =!= 0.002 2041 5 .1  X 
SilicaB 3.1975 0.014 f 0.002 0.030 f 0.003 356 7 . 2  X 
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4 0 6 0  loo 120 140 1 6 0  
Actual Viscosity 

Fig. 2. Actual vs. predicted viscosity (MSa at  100OC) for Silica A. 

adequacy of the fitted equations for the three different pigments is shown 
in Figures 2-4, where actual viscosity is plotted against viscosity predicted 
by the fitted equation. It is clear that these equations are excellent pre- 
dictive models. The overlapping confidence intervals for 4 for the three 
different fillers in Table I1 is further evidence that filler and plasticizer are 
noninteracting. 

The transformation family given in eq. (7) has been evaluated on many 
different elastomer-filler-plasticizer systems, both from our laboratory 
and from other suppliers’ literature, and these encompassed many different 
elastomer, plasticizer, and filler types. The results indicated that the 
logarithmic model, eq. (11), is of quite general validity as a good predictive 
model. 

4 and y as Plasticizer and Pigment Characteristics 

Since eq. (11) appears to be a good predictive model for most elastomer, 
filler, and plasticizer types, we can view 4 and y as basic characteristics of a 
plasticizer and filler, respectively. They will arbitrarily be defined as the 
plasticizer viscosity coefficient and filler viscosity coefficient, respectively. 
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0 20 30 40 60 

Actual Viscosity 

Fig. 3. Actual vs. predicted viscosity (MS, at 100°C) for Silica B. 

1 

Actual Viscosity 
Fig. 4. Actual vs. predicted viscosity (MS4 at 100°C) for N990. 
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The availability of these indices can be quite useful to  the compounder. 
For example, if 4 and y are available for a particular elastomer, all the 
compounder requires is a measure of the viscosity of the raw elastomer, 
qo, to  be able to  predict the viscosity of filled and plasticized compounds. 
Furthermore, if we select an arbitrary elastomer as a reference, we can 
calculate 4 and y for various fillers and plasticizers and thus have a means 
of comparing viscosity performance. Since eq. (11) is valid for viscosity 
measured with either the small or large rotor, we will subscript 4 and y 
to  indicate which viscosity we are referring to. For example, for small rotor 
viscosities, we will have 4s and ys; and for large rotor viscosities, +I, and 
yL. 4s and yL E ys in many in- 
stances. 

In  a later section, we will see that 4L 

Additional Example 

As a further example, consider the pigment-plasticizer study shown in 
Table I11 for NBR. With the exception of the first compound (raw 
polymer), the compounds comprise a rotatable central composite design 
with five replicated center points.1° The replicated center points permit 
an F ratio for lack of fit t o  be calculated for any equation fitted to  the 
data. This F ratio gives us a means for testing whether the fitted equation 
is representationally adequate. Figure 5 shows the F ratio for lack of fit 
and the regression F ratio as a function of t h e  transformation parameter X 
for the fit of eq. (6) to  the NBR data. 

Here again, the regression statistics were optimal near A = 0, indicating 
the adequacy of eq. (11). The excellent fit of this equation is shown in 

--I? 
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A 
Fig. 5. Regression statistics vs. x for filled and plasticized NBR. 
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Fig. 6. Actual vs. predicted viscosity (MS, at 100'C) for NBR system. 

Figure 6, where actual viscosity is plotted against predicted viscosity. 
Other regression statistics and the resulting viscosity coefficients are also 
shown in Table 111. Note that the viscosity coefficients for Silica A in 
NBR (0.029 f 0.005) and that for Silica A in SBR (0.031 f 0.001) have 
overlapping confidence intervals, so that it cannot be concluded that 
Bilica A exhibits different viscosity behavior in NBR 'than in SBR. 

In  this example, we worked,with F (lack of fit) and F (regression), 
whereas in the first example we minimized the F ratio for quadratic versus 
linear effects. Either method will result in the same optimal A value, 
because by minimizing the quadratic tendency in the model, we are in 
essence improving the fit (removing the bias) of a linear model. The 
options available in the regression analysis computer program being used 
will determine which method will be easiest to accomplish. 

In  analyzing the results of Table 111, the point for the raw-polymer 
viscosity was not employed, although i t  could have been. Since this 
particular point lies outside of the design limits, it can be used to give an 
idea of the accuracy of extrapolations. It has been pointed out that 
regression equations generated from response surface designs should not 
be used for extrapolation.11 There is one exception to  this rule, however, 
and that is when the equation is known to be mechanistic. In this case, 
extrapolations should give reasonable results. We might consider, then, 
that if the logarithmic model produces reasonably accurate extrapolations, 
it may possibly be a partially mechanistic model, i.e., it may have some 
theoretical justification. From the fitted equation, the predicted value for 
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70 turned out to be 21.5 compared to the actual value of 22. This degree 
of accuracy for extrapolations to zero filler and plasticizer has been found 
for most of the systems evaluated. This indicates that the linear logarith- 
mic model may indeed have some theoretical justification. At any rate, 
it is an excellent predictive model. 

Filler and Plasticizer Mixtures 
It has been shown that fillers and plasticizers affect viscosity (on the 

logarithmic scale) independently of each other and that the effects are 
linear. It may also be reasonable to assume that two or more pigments in 
an elastomer system also exert independent and linear effects on logarithmic 
viscosity. If this is true, it  should be possible to predict the viscosity of 
such a system from the following equation: 

k 

i =  1 
In 9 = In 70 + C rtFr (15) 

where 7 is the viscosity of the filled elastomer, qo is the viscosity of the 
elastomer gum, and y t  is the viscosity coefficient for filler F t .  

To test this hypothesis, three fillers, Silica A, Silica B, and N774 black, 
were evaluated simultaneously in SBR as shown in Table IV. Regression 
results and estimated viscosity coefficients are also shown here. The 
resultant equation was as follows: 

In q = 3.91 + 0.038 (phr Silica A) + 0.014 (phr Silica B) 

+ 0.006 (phr N774). (16) 

TABLE IV 
Data and Results for Filler Mixtures in SBR 

A .  Formulations 
SBR-1500 100 
Silica A 5 .5 1.5 15 17.5 2 . 5  10 10 10 10 10 10 
Silica B 5 15 5 15 10 10 17.5 2 .5  10 10 10 10 
N774a 15 5 5 15 10 10 10 10 17.5 2 . 5  10 10 

B. Mooney Viscosity 

M L 4 a t  100°C 73 78 95 121 114 66 96 80 84 79 89 86 

C. Regression Results 

F Regression 54.7 l n q ,  = 3.91 
Standard error 0.044 t)o = 49.9 (ML,) 
R2 X 100 95.4 
Std. dev. of duplicated point 0.034 

D. Viscosity Coeficients 

Silica A 0.036 f 0.007 
Silica B 0.014 f 0.007 
N774' 0.006 f 0.007 

Filler YL 

a Cabot Corporation. 
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Fig. 7. Actual VS. predicted viscosity (MLa at 100OC) for pigment mixtures in SBR. 

The degree of fit of this equation is shown in Figure 7, where aqtual v i 5  
cosity is-plotted against predicted viscosity. As can be seen, the fit is 
relatively good. Furthermore, in Table IV, lack of fit can be tested by 
dividing the standard error by the standard deviation for the duplicated 
point and squaring. This results in an approximate F ratio for lack of 
fit equal to 1.67, a value which is not significant. From this test and the 
appearance of Figure 7, we then have no reason to reject the hypothesis of 
additivity of different fillers. Furthermore, the fact that the confidence 
intervals for Silica A and Silica B overlap those found in Table I1 lends 
further support to this hypothesis. 

Continuing along these lines, it is expected that for a mixture of plasti- 
cizera in an elastomer, the following equation would hold: 

where q is the viscosity of the plasticized elastomer, to is the viscosity of 
the gum elastomer, and +i is the viscosity coefficient of plasticizer Pi .  
Furthermore, for elastomers containing more than one type of filler and 
more than one type of plasticizer, we would ultimately expect the following 
equation to be a good predictor: 

where the terms are defined as above. 
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TABLE V 
Data and Results for Filler and Plasticizer Mixtures in SBR 

SBR 1500 
Silica A 
N330" 
Naphthenic Oil 
Cumarone indene resinb 

ML4 at 100°C 
MS4 at l00OC 

F Regression 
Standard error 
R2 X 100 

A .  Fomulatiolts 
100 100 

15 - - 15 
15 15 30 - 

- 10 10 20 10 
- 10 20 10 10 

33. Mooney Viscosity 

- 
- 

51 61 36 39 55 
29 34 20 21 30 

C. Regression ResuUs 
405 
0.003 
99.6 

D. Viscosity Coefieients 

15 15 30 30 30 15 
15 30 - 15 30 15 
20 - 20 - 10 10 
- 20 20 10 - 10 

54 88 50 124 133 64 
30 49 27 68 74 35 

lnqo = 3.95 

y~ (Silica A)  = 0.027 st 0.002 
y~ fN330) = 0.013 f 0.002 
4~ (oil) = 0.028 f 0.003 
4~ (resin) = 0.014 f 0.003 

a Cabot Corp. 
Cumar MH 2l/?, Allied Chemical Corp. 

To evaluate eq. (18), a series of SBR formulations was mixed containing 
various combinations of two fillers: Silica A and N330 black and two 
plasticizers; naphthenic oil and a coumarone-indene resin. Formulations 
and viscosities are shown in Table V. The resultant viscosity coefficients 
and relevant statistics from the regression analysis are also shown. Note 
that the viscosity coefficients for Silica A and naphthenic oil agree well with 
those found in Table 11. The excellent fit of this equation to the data is 
illustrated in Figure 8. It would, of course, be unrealistic to expect such 
good agreement with all or even most studies containing this many in- 
gredients, but our findings here lend considerable support to  the utility 
of the model. 

Incremental Changes in Viscosity 
One of the problems frequently confronting a compounder is the ostim& 

tion of the change in viscosity resulting from the addition or reduction of 
filler or plasticizer in an existing compound. We can get a good approxi- 
mation for this purpose by differentiating eq. (12) as follows: 

and 

(20) 
brl 
- = - h 0 e x p  (rF) exp (-4P) = -&l. ap 
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Fig. 8. Actual vs. predicted viscosity (ML, a t  100°C) for pigment and plasticizer 
mixtures in SBR. 

These equations tell us that the approximate change in viscosity per part 
of filler or plasticizer is obtained by multiplying the viscosity coefficient by 
the viscosity of the compound. For example, suppose we have an N990- 
filled SBR with a viscosity coefficient for the black of 0.006 a t  a viscosity 
level for the compound of 70. Then, the approximate increase in vis- 
cosity per part of N990 would be 0.006 X 70 = 0.4 units. If the com- 
pound in question contains several fillers and plasticizers, and we want the 
incremental effect of only one filler or plasticizer, the result is the same. 
For example, the effect of filler i and plasticizer j would be as follows : 

and 

Equations (19)-(22) represent the instantaneous rates of change of 
viscosity with filler or plasticizer. These estimates will give good approxi- 
mations for changes in pigment or plasticizer levels up to  about 10-15 phr. 
For larger changes, however, eq. (18) should be employed, rewritten as 
follows: 
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The change in viscosity resulting from a change in filler loading from F1 to 
F1’ will then be 

An analogous result will hold for changes in plasticizer levels. 

Methods for Calculating Viscosity Coefficients 

The viscosity coefficients 4 and y can be estimated quite easily. To 
estimate both of them, as little as three compounds are required. For 
example, Figure 9 shows the viscosity of one level each of Silica A and oil 
in SBR-1500, as well as the viscosity of the raw rubber given the same 
amount of processing. The viscosity coefficients are then the natural 
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logarithm of the ratio of the largest to  the smallest viscosity divided by the 
change in phr for the variable in question, as follows: 

The points in Figure 8 were taken from Table I, and it is interesting that 4 
and 7 estimated from only three compounds are remarkably close to  the 
coefficients obtained using all of the data. Of course, the more data we 
use, the more accurate the coefficients will be. 

A more efficient method for calculating 6 and y simultaneously is to 
employ a 22 factorial design, aa shown in Figure 10. A 22 factorial design 
simply consists of two variables a t  two levels each. In  Figure 10, the 
viscosities are shown corresponding to  points denoted q1 through q4. 
From these four viscosities, the viscosity coefficients are calculated as 
follows: 
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where Aphr is the difference between the highest and lowest filler or oil 
levels. Furthermore, if we let Fo be the center of the filler range (i-e., 
36 phr) and Po be the center of the plasticizer range (i.e., 20 phr), we can 
calculate In rlo as follows: 

l n ~ o  = 1/4 I n ( 7 1 1 ~ 1 3 9 4 )  - rFo + dPo 
= 1/4 In [(26)(124)(15)(63)] - 0.031 (36) + 0.031 (20) 

= 3.222. (28) 

(29) 

Thus, our equation is as follows: 

In q = 3.22 + 0.031F - 0.031P. 

Notice that these results compare favorably with those of Table 11. 

P X F  interaction effect IPF,  as follows: 
We can obtain one additional bit of information from this design, the 

The significance of this interaction effect is as follows. If eq. (29) ade- 
quately represents the data, I,, should be merely an estimate of experi- 
mental error since there is no real interaction. Since I,, represents a 
logarithmic interval as discussed previously, it represents fractional error 
(disregarding the sign). Therefore, if 6.3% is a reasonable error estimate, 
we conclude that our equation is adequate. Comparing this result with 
the standard error in Table 11, we can see that our equation is adequate. 

The 22 factorial design is only one of many types of designs suitable 
for estimation of viscosity coefficients, and the interested reader is referred 
to  texts on statistical experimental design and response surface methodology 
for other  design^.^^.^^^^^ In  choosing a design, one must keep in mind that 
the more precision required for estimation of 9 and y, the more points a 
design must contain. Also, if the experimenter is prepared to accept the 
log linearity of viscosity, he can use two level designs such as 2k and 2k-p  
factorials. If, however, he wants to test this linearity, second-order 
response surface designs must be employed. 

Large Versus Small Rotor Viscosities 
Suppose we take eq. (12) and let qs = small rotor viscosity and qL = 

Further assume that the relationship between v s  large rotor viscosity. 
and qL is as follows: 

rlL = ails (31) 

where a is a constant. Then it is clear that the same parameters would bc 
obtained in eq. (12) regardless of the rotor used, since a will cancel out in 
the ratio of two viscosities as follows: 

(32) 
1)L a7s 1)s 

1)OL avos 70s 
_ - _ _ - _ .  - - 
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Unfortunately, eq. (31) does not always hold and a more realistic rela- 
tionship is 

7L = b + a7s 

where b is a constant generally in the vicinity of * 5  and a is approximately 
1.8. Because of the constant term b, the ratio of two viscosities for a given 
rotor will be a function of the rotor used, and thus 4 and y must always be 
subscripted to indicate which rotor was used. Naturally, if b is near zero, 
YL G YS and +L 

(33) 

4s. 

CONCLUSIONS AND RECOMMENDATIONS 

It has been illustrated that the viscosity of an elastomer compound can 
be approximately predicted by a linear logarithmic model which employs 
only one parameter for each filler and/or plasticizer in the formulation. 
It has been suggested that these parameters be thought of as basic charac- 
teristics of pigments and plasticizers. They could then be quoted in sup- 
pliers’ literature as a possible alternative to tabular data or contour plots 
for viscosity prediction. It may also be useful to  select some standard 
elastomer, such as the National Bureau of Standards’ SBR 1503 as a 
medium for comparing the coefficients since they will generally vary 
among elastomer types. 

A natural extension of this work would be to  relate viscosity coefficients 
of fillers to particle size, structure, and shear rate. Analogously, for 
plasticizers, it  would be interesting to find what relationships exist be- 
tween, say, polarity, molecular weight, and viscosity, and viscosity co- 
efficients in various elastomers. 

It is recognized that the viscosity model proposed in this paper will be 
inadequate for some systems. On the other hand, it has been found 
adequate for such a wide variety of systems that it should find wide appli- 
cations. 

This paper is based on a report presented at a Meeting of the Division of Rubber 
Chemistry, ACS, Detroit, Michigan, May 1-4, 1973. 
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